Suppression of Acid Mine Drainage from Pyrite through the use of Adsorbed Phospholipid

Daniel Strongin

Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA

Acknowledgments

- Martin Schoonen
- Eelin Lim (Temple Biology)
- Xiang Zhang
- Alicia Elsetinow
- Andro-Marc Pierre Louis
- Benoit Van Aken Temple

Department of Energy-BES-Geosciences

– PA NanoTechnology Institute Grant

• Lisa Hu Temple

Funding

S.

Acid Mine-Drainage due to Pyrite oxidation

Mine tailings

Groundwater Contamination

<u>Goal: Develop a microscopic understanding of</u> <u>pyrite oxidation to be used to inhibit AMD</u>

Pyrite and its oxidation

The challenge is to find a method that will inhibit the reactions between pyrite, water, and oxygen. Existing methods rely on creating a physical barrier to oxygen.

Composition of Typical Mining Waste

Fresh AMD (ppm)	Old AMD (ppm)
533.84 ± 10.24	78.28 ± 3.39
22.2 ± 7.7	19.27 ± 4.45
36.98 ± 3.75	< LOD
12.95 ± 4.79	19.99 ± 3.98
10.07 ± 5.33	18.1 ± 4.68
4.62 ± 2.93	10.76 ± 2.42
62.9 ± 6.9	10.26 ± 3.99
338.24 ± 20.65	< LOD
126.57 ± 20.21	56.56 ± 11.37
176.72 ± 40	< LOD
	10681.81 ± 158.81
649.3 ± 78.4	< LOD
	866191.19 ± 37821.64
167.03 ± 29.5	< LOD
	Fresh AMD (ppm) 533.84 ± 10.24 22.2 ± 7.7 36.98 ± 3.75 12.95 ± 4.79 10.07 ± 5.33 4.62 ± 2.93 62.9 ± 6.9 338.24 ± 20.65 126.57 ± 20.21 176.72 ± 40 39306.26 ± 380.61 649.3 ± 78.4 945061.56 ± 44137.18 167.03 ± 29.5

5

Magnitude of the Problem

§ Pyrite (FeS2), "fools gold", is the predominant sulfur containing solid in coal.

Decomposition of pyrite is the main source of acid mine drainage i.e. contact of the pyrite with oxygen/water in the environment is the MAIN culprit.

§ 10 million tons of pyrite waste are produced by coal mining states (i.e., Pennsylvania, Kentucky, Ohio, Illinois, Indiana, and Virginia)

§ AMD affects thousands of miles of rivers and streams and over a hundred thousand acres of lakes and reservoirs in the US.

Cost to the US mining industry is on the order of a million dollars a day.

Pyrite

CB g^{*} S 3p e_{g}^{*} Fe 3d g^{*} S 3p e_{g}^{*} Fe 3d t_{2g} Fe 3d π^{*} , σ S 3p

Composite Pyrite Oxidation Reactions

- $FeS_2 + 7/2O_2 + H_2O \rightarrow Fe^{2+} + 2SO_4^{2-} + 2H^+$
- $FeS_2 + 14Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$
 - Many elementary reactions make up these reactions.

 Understanding these steps will allow an intelligent modification of the surface for oxidation suppression?

Various AMD Remediation Methods

"Prevention is better than cure" which is generally preferable, but this is not always pragmatic to minimize AMD generation

D.B. Johnson, K.B. Hallberg / Science of the Total Environment 338 (2005) 3-14

Summary of Experimental Observations

Rimstidt, J. D.; Vaughan, D. J. Geochim. Cosmochim. Acta 2003, 67, 873-880.

i) Sulfate is dervied primarily from water-O in the aqueous environment.

Influence of Microbes

- Direct mechanism: Involves enzymatic reactions taking place between the attached bacteria and mineral surface, with the microbe mediating both solubilization and iron oxidization directly at the mineral surface
- Indirect mechanism: Mineral oxidizing agent is dissolved ferric iron FeS₂ + 14 Fe³⁺ + 8 H₂O -> 15 Fe²⁺ +2 SO₄²⁻ + 16 H⁺

and the role of the microbe is to oxidize the ferrous iron product from the abiotic mineral oxidation to ferric iron

 $4 \text{ Fe}^{2+} + \text{O}_2 + 4 \text{ H}^+ -> 4 \text{ Fe}^{3+} + 2 \text{ H}_2\text{O}$

When these two reactions are coupled, mineral oxidation proceeds with a net production of ferric iron, sulfate, and acidity

Biotic Contribution to Pyrite Oxidation is Significant

 $4Fe^{3+} + 8H_2O \rightarrow 15Fe^{2+} + 2SO_4^{2-} + 16H^+$

Bacteria drive the oxidation of Fe²⁺ to Fe³⁺, a strong Oxidant of pyrite

Initial adhesion of bacteria occurs at defect regions of Pyrite surface

Pyrite after 10 day exposure to *Acidithiobacillus ferrooxidans*

Microcolonies Acidithiobacillus ferrooxidans on

pyrite

8 days

- 5 .

40 days

Effect of Acidithiobacillus ferrooxidans on pyrite Topography

Addressing the Problem

§ Need a barrier between pyrite and the environment i.e. the barrier should be WATER/AIR REPELLANT

§ Barrier needs to bind strongly to those parts of pyrite that lead to AMD.

§ Barrier should be applicable to pyrite/coal waste above the surface as well as subsurface in abandoned, and flooded mining sites.

Cost effectiveness and ease of application should be an important consideration.

Synchrotron based Techniques

X-ray absorption fine structure

High-resolution

Photoelectron spectrosocopy

Identification of Reactive sites on {100} FeS₂ using photoemission at the NSLS

Fundamental Surface Chemistry and Mechanism

- 1. What are the surface species that form on pyrite
- 2. What are the active sites on pyrite?
- 3. Is the entire surface reactive?

Some Techniques we use

X-ray Photoelectron Spectroscopy

ATR FT- Infrared Spectroscopy

Atomic Force Microscopy

Scanning Tunneling Microscopy

Atomic Force Microscope/ Scanning Tunneling Microscopy

STM of Pyrite surface after exposure to Oxidizing Environment

Microscopic View

Oxidation Product

Hypothesis: Blocking Initial oxidation product Will suppress AMD

Impede oxidation by blocking fundamental step

Phosphate, PO₄³⁻, Losses effectiveness at pH >3

Where do we turn now? Need good protection at lower pH

Hypothesis:
 Lipid (two tail coatings)

Example of lipids used to suppress pyrite oxidation

L-a-Phosphatidylcholine (egg PC)

Q

1,2-bis(10,12-tricosadiynoyl)-*sn*-Glycero-3-Phosphochøline (23:2 Diyne PC)

0

 $(CH_2)_8 \sim C \equiv C - C \equiv C - (CH_2)_9 CH_3$

 $-(CH_2)_9CH_3$

Tail

1,2-Dipropionoyl-sn-Glycero-3-Phosphocholine (3:0 PC lipid)

Acid Mine Drainage

Suppress $Fe^{3+} + e - \rightarrow Fe^{2+}$

Atomic Force Microscope/ Scanning Tunneling Microscopy

Atomic Force Microscopy

Lipid on pyrite

25 angstromsBilayer = $25 \times 2 = 50 \text{ angstroms}$

Pyrite surface

Figure 7

75 % suppression Induced by adsorption of phospholipid

Т

Acid Mine Drainage

J

Cross-linking during UV light irradiation

The presence of Acidiphilium acidophilum (AA) disrupts lipid layer

Cross-linking overcomes microbial Facilitated degradation of oxidation barrier

Displacement of microbes by phospholipid

Displacement of bacteria by phospholipid

pyrite

Cell wall peptidoglycan (polysaccharides + protein)

Phospholipid Outer membrane of bacteria lipopolysaccharide (LPS) containing

Free lipid Introduced into solution

Bacteria/pyrite interface

So Far

- Lipid shows binding via the phosphate group
- Lipid adsorption exhibits significant oxidation suppression even at fractional monolayer concentrations

Further question Is bilayer structure needed for efficient oxidation suppression?

Short vs. Long chain

23:2 Diyne PC (bilayer in solution)

L- α -Phosphatidylcholine (egg PC)

1,2-bis(10,12-tricosadiynoyl)-*sn*-Glycero-3-Phosphocholine (23:2 Diyne PC)

1,2-Dipropionoyl-sn-Glycero-3-Phosphocholine (3:0 PC lipid)

Column Experiments at Temple University

Images of mining waste. The one with the red tint Is coated with a lipid and then polymerized. The data shown in the following slides did not use a polymerizable lipid.

The representative data shown in the following slides were potential by passing pH 7 water through the columns that contained mining waste.

Column Experiment

Pyrite is Stabilized by Lipid

Effect of Lipid on pH

T

Metagenomic Studies

- § 16S rDNA metagenomic pyrosequencing to determine the identity of the microbial communities.
- S Autotrophic bacteria: make their own energy. In the context of AMD they are sulfur and iron oxidizing bacteria that drive the process
- § Heterotrophic bacteria: Use organic compounds as a source of energy and carbon.

Abundance of major bacteria phyla detected in the column samples and dry samples. The phyla containing less than 1% of the total microbial species were not represented.

Abundance of AMD-specific bacteria families detected in the column samples and dry samples.

Summary of Metagenomic Studies

- § A relatively higher proportion of Proteobacteria (mainly beta- and alpha-Proteobacteria) was observed in all lipid-treated mining samples, suggesting enrichment in heterotrophic species using lipids as carbon and energy source.
- § A higher proportion of Actinobacteria and Nitrospira was observed in the control samples (lipid-free), suggesting that bacterial communities in non-treated samples were dominated by autotrophic bacteria using reduced iron and/or sulfur.

Summary

- A microscopic view of the surface led to hypotheses realated to suppressing AMD
- Reaction sites to blocked were identified on pyrite
- Phospholipids bind preferentially to reactive sites on pyrite
- Lipid bilayer form a robust hydrophobic coating that suppresses oxidation of the pyrite surface.
- Column tests show that the lipid bilayers suppress AMD in the laboratory environment for at least 3 years.
- Lipids alter the microbial communities associated with pyrite-containing Mining Waste.

